1. (12 points) On the line provided for each part, list all possible values which answer the question. If there is no possible value, write **DNE**. No justifications are needed for this question

Suppose *A* is a 5 × 9 matrix and the associated linear transformation L_A , where $L_A(\mathbf{x}) = A\mathbf{x}$, is surjective. Suppose *B* is a 7 × 4 matrix and the associated linear transformation L_B , where $L_B(\mathbf{x}) = B\mathbf{x}$, is injective.

(a) What are all of the possible values for the nullity of *A*?

	(a)	4 only
(b) What are all of the possible values for the rank of <i>A</i> ?	(b)	5 only
(c) What are all of the possible values for the rank of A^T ?	(c)	5 only
(d) What are all of the possible values for the rank of <i>B</i> ?	(d)	4 only
(e) What are all of the possible values for the nullity of <i>B</i> ?	(e)	<u>0 only</u>

(f) What are all of the possible values for the nullity of B^T ?

(f) <u>3 only</u>

2. (12 points) On the line for each part, provide <u>one matrix</u> that satisfies the condition. If no such matrix exists, write **DNE**. No justifications are needed for this question.

(a) 3×3 matrix A where dim(Col(A)) = 1.

- [1 2 3 2 3 $1 \ 2 \ 3$ (a) _ (b) 3×3 matrix *B* where dim(Row(*B*)) = 2. $1 \ 0 \ 0^{-1}$ 0 2 0 0 0 0 (b) (c) 3×3 matrix *C* where dim(Nul(*C*)) = 3. 0 0 0 0 0 0 0 0 0 (c) (d) 2×4 matrix *D* where dim(Nul(*D*)) = 3. $(d) \underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}}_{(d)}$ (e) 2×4 matrix *E* where dim(Row(*E*)) = 3. (e) _____**DNE**____
- (f) 2×4 matrix F where dim(Col(F)) = 3.

(f) ______ **DNE**_____

3. (10 points) Let $S = \left\{ \begin{bmatrix} 4 & 3 \\ 1 & 4 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ 2 & 6 \end{bmatrix} \right\}$. Extend S to a basis for $\mathbb{R}_{2 \times 2}$.

These two independent vectors in $\mathbb{R}_{2\times 2}$ have coordinate vectors $\begin{bmatrix} 4\\3\\1\\4 \end{bmatrix}$ and $\begin{bmatrix} 4\\2\\6 \end{bmatrix} \in \mathbb{R}^4$. At least two of the standard basis vectors for \mathbb{R}^4 could be added to this set to form a basis of \mathbb{R}^4 . Reduce $\begin{bmatrix} 4 & 4\\3 & 4\\0 & 1 & 0 & 0\\1 & 2\\0 & 0 & 1 & 0\\4 & 6\\0 & 0 & 0 & 1 \end{bmatrix}$ to an echelon form to see that any two can be chosen. A possible answer could be $\left\{ \begin{bmatrix} 4 & 3\\1 & 4 \end{bmatrix}, \begin{bmatrix} 4 & 4\\2 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 0\\0 & 0 & 1 \\0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1\\0 & 0 \end{bmatrix} \right\}$, using $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^4$.

4. (10 points) Let $T = \left\{ \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ 0 & 8 \end{bmatrix}, \begin{bmatrix} 3 & 3 \\ 3 & 6 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \right\}$. Reduce T to a basis for $\mathbb{R}_{2 \times 2}$.

The last vector is a scalar multiple of the fourth, so it can be removed immediately. Using coordinate vectors for the remaining five, reduce $\begin{bmatrix} 2 & 1 & 0 & 4 & 3 \\ 1 & 1 & 0 & 4 & 3 \\ 0 & 0 & 1 & 0 & 3 \\ 1 & 1 & 0 & 8 & 6 \end{bmatrix}$ to an echelon form to see that the first four vectors form a basis of \mathbb{R}^4 . A possible answer could be $\{\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 4 & 4 \\ 0 & 8 \end{bmatrix}\}$.

5. (12 points) Let \mathcal{E} be the standard basis for \mathbb{R}^3 and let $\mathcal{B} = \left\{ \begin{bmatrix} 4\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\7\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\2 \end{bmatrix} \right\}$ be another basis for \mathbb{R}^3 .

(a) Find $[\mathbf{x}]_{\mathcal{E}}$, the coordinate vector of $\mathbf{x} = \begin{bmatrix} 4\\7\\-8 \end{bmatrix}$ with respect to \mathcal{E} . Justify your answer.

$$[\mathbf{x}]_{\mathcal{E}} = \begin{bmatrix} 4 \\ 7 \\ -8 \end{bmatrix} \text{ because } \mathbf{x} = 4\mathbf{e}_1 + 7\mathbf{e}_2 - 8\mathbf{e}_3.$$

(b) Find $[\mathbf{y}]_{\mathcal{B}}$, the coordinate vector of $\mathbf{y} = \begin{bmatrix} 2\\7\\4 \end{bmatrix}$ with respect to \mathcal{B} . Justify your answer.

	$\left[\frac{1}{2}\right]$		[2]		[4]		[0]		[0]
$[\mathbf{y}]_{\mathcal{B}} =$	1	because	7	$=\frac{1}{2}$	0	+	7	+ 2	0.
	2		4		0		0		2

(c) Is there a vector \mathbf{z} such that $[\mathbf{z}]_{\mathcal{B}} = \begin{bmatrix} 7\\ -3\\ -1 \end{bmatrix}$? Justify your answer.

	[4]		[0]		[0]		28	ļ
Yes. $z = 7$	0	- 3	7	_	0	=	-21	
	0		0		2		-2	

- 6. (12 points) Let $L: V \to W$ be a linear transformation where dim(V) = 5 and dim(W) = 4. Determine the validity of each statement as **T** (always) TRUE, **F** (always) FALSE, or **S** SOMETIMES true/false. Provide a brief justification for your answer.
 - (a) L is an isomorphism. (An isomorphism is a bijective linear transformation.)

(a) _____ F____

The matrix for L is 4×5 which has a maximum rank of 4, even though it has 5 columns. L cannot be injective.

(b) $\dim(\ker(L)) = 5$.

(b) _____ S____

Example when true: The trivial map $T : \mathbb{R}^5 \to \mathbb{R}^4$ via $T(\mathbf{x}) = \mathbf{0}$ has a 5-dimensional kernel. Example when false: The derivative map $\frac{d}{dt} : \mathbb{P}_4 \to \mathbb{P}_3$ via $\mathbf{p}(t) \mapsto \mathbf{p}'(t)$ has a 1-dimensional kernel.

(c) If *H* is a subspace of *V* then $\dim(H) < \dim(L(H))$.

(c) _____F

A basis for *H* cannot have less elements than a basis for L(H). If *L* is injective then the dimensions could be equal, at best.

- 7. (8 points) Let A, B, C, D be 3×3 matrices such that $det(A) = \frac{1}{4}$, $det(B) = \sqrt{3}$, det(C) = 2, det(D) = 0.
 - (a) Compute det(AD) det(BC).

$$0 - 2\sqrt{3}$$

(b) Compute $det(B^2A^T) + det(2C^{-1})$.

$$\left(\sqrt{3}\right)^2 \left(\frac{1}{4}\right) + 2^3 \left(\frac{1}{2}\right) = \frac{3}{4} + 4 = \frac{19}{4}$$

8. (4 points) Use determinants to determine if the three points (-3, -8), (1, -3), $(5, 2) \in \mathbb{R}^2$ are collinear. (Hint: Otherwise they would form a triangle.)

Translate all three points so that	tone	of th	nem is at the origin, then use the other two as the terminal points of two
vectors which generate the "tria	ngle	." Co	Sompute $\begin{vmatrix} -4 & 4 \\ -5 & 5 \end{vmatrix} = 0$. Since the area of this "triangle" is 0, the points
must be collinear.			
Alternatively, we can compute	-3 1 5	-8 -3 2	$\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = 0$ to determine that the points are collinear.

- 9. (10 points) Let $A = \begin{bmatrix} 1 & -2 & -1 \\ 4 & -2 & 2 \\ -7 & 1 & -6 \end{bmatrix}$.
 - (a) Determine if $\mathbf{e}_2 \in \operatorname{Nul}(A)$.

e₂ ∉ Nul(A). Compute
$$\begin{bmatrix} 1 & -2 & -1 \\ 4 & -2 & 2 \\ -7 & 1 & -6 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
.

(b) Determine if $\mathbf{e}_3 - \mathbf{e}_1 \in \operatorname{Col}(A)$.

	[1	-2	-1	-1]	[1	-2	1	1]	
$\mathbf{e}_3 - \mathbf{e}_1 \notin \operatorname{Col}(A)$. The augmented column of	4	-2	2	0	~ 0	1	1	0	has a pivot. Therefore
	_7	1	6	1]	0	0	0	1	
$\mathbf{e}_3 - \mathbf{e}_1$ is not a linear combination of the colu	mns	of A.							

(c) Compute $\dim(\operatorname{Row}(A)) - \dim(\operatorname{Row}(A^T))$.

A and A^T have the same rank, so dim(Row(A)) – dim(Row(A^T)) = 0.

- 10. (10 points) Let $A \in \mathbb{R}_{m \times p}$ and $B \in \mathbb{R}_{n \times p}$ and let $U = \{\mathbf{x} \in \mathbb{R}^p | A\mathbf{x} = B\mathbf{x}\}$.
 - (a) When $m \neq n$, U is a not a subspace of \mathbb{R}^p . Why not?

When $m \neq n$, $A\mathbf{x} \in \mathbb{R}^m$ but $B\mathbf{x} \in \mathbb{R}^n$. Therefore U is an empty set, and hence not a subspace of \mathbb{R}^p .

(b) When m = n, decide if U can be a subspace of \mathbb{R}^p . Fully justify your answer.

When m = n, U can be described as $\{\mathbf{x} \in \mathbb{R}^p | A\mathbf{x} - B\mathbf{x} = \mathbf{0}\} = \{\mathbf{x} \in \mathbb{R}^p | (A - B)\mathbf{x} = \mathbf{0}\} = \text{Nul}(A - B)$. Thus U is a subspace of \mathbb{R}^p simply because it is a *Fundamental Subspace* of A - B.

Alternatively, we can just go through the subspace test.

- *U* is nonempty since $A\mathbf{0} = B\mathbf{0} = \mathbf{0}$.
- *U* is closed under vector addition since for any $\mathbf{x}, \mathbf{y} \in U$, $A\mathbf{x} = B\mathbf{x}$ and $A\mathbf{y} = B\mathbf{y}$. $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = B\mathbf{x} + B\mathbf{y} = B(\mathbf{x} + \mathbf{y})$.
- *U* is closed under scalar multiplication since for any $\mathbf{x} \in U$ and any $k \in R$, $A(k\mathbf{x}) = kA\mathbf{x} = kB\mathbf{x} = B(kA\mathbf{x}).$